Multipole expansions and pseudospectral cardinal functions: A new generalization of the fast fourier transform

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM

In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.

متن کامل

A New Fast Discrete Fourier Transform

This paper presents a new fast Discrete Fourier Transform (DFT) algorithm. By rewriting the DFT, a new algorithm is obtained that uses 2 n?2 (3n?13)+4n?2 real multiplications and 2 n?2 (7n? 29) + 6n + 2 real additions for a real data N = 2 n point DFT, comparable to the number of operations in the Split-Radix method, but with slightly fewer multiply and add operations in total. Because of the o...

متن کامل

Using Fast Fourier Transform in the 3-d Multilevel Fast Multipole Algorithm

In this paper a method is presented how to perform interpolation and anterpolation in both spherical coordinates θ and φ by trigonometric polynomials and the fast Fourier transform (FFT) in the 3-D multilevel fast multipole algorithm (MLFMA). The proposed method is exact in interpolation and anterpolation, and has the high numerical efficiency of FFT. A numerical comparison suggests that the pr...

متن کامل

Piecewise Polynomial Functions and the Fast Fourier Transform

Piecewise polynomial functions are frequently used to approximate functions that exhibit complex behavior across a variety of scales. We investigate the use of nonuniform FFT (NUFFT) approaches to quickly and accurately evaluate the first several Fourier series coefficents of piecewise linear functions, and propose a new NUFFT approach that provides quick convergence at relatively low cost.

متن کامل

A New Formulation of the Fast Fractional Fourier Transform

By using a spectral approach, we derive a Gaussian-like quadrature of the continuous fractional Fourier transform. The quadrature is obtained from a bilinear form of eigenvectors of the matrix associated to the recurrence equation of the Hermite polynomials. These eigenvectors are discrete approximations of the Hermite functions, which are eigenfunctions of the fractional Fourier transform oper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 1992

ISSN: 0021-9991

DOI: 10.1016/0021-9991(92)90333-t